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Abstract 
Stuck pipe and other related drilling hazards are major causes of non-productive time while 
drilling. Being able to spot early indications of potential drilling risks manually by analyzing 
drilling parameters in real-time has been a significant challenge for engineers. However, this 
task can be successfully executed by modern data analytics tools based on machine learning 
(ML) technologies. The objective of the presented study is to prove and demonstrate the ability 
of such machine learning algorithms to process and analyze simultaneously a variety of surface 
drilling data in real-time in order to: a) detect anomalies, that are in most cases invisible to a 
human eye; and b) provide early warnings of possible upcoming drilling risks with sufficient 
time in advance, so that the rig crew can execute the appropriate mitigation actions.  

The algorithms developed have favorable characteristics, such as adaptiveness to real-time 
data and agnosticism to well types, BHAs, mud types, lithologies or any other specific well 
characteristics. This supports out-of-the-box usage, which enables scalability to large numbers 
of wells. Targeted sub-systems detect the current operation type (tripping, drilling, reaming, 
etc), and detect symptoms related to differential sticking, hole cleaning issues, mechanical 
sticking, pack offs, tight holes, obstructions and other risks by analyzing standard surface 
drilling time logs in real-time, such as hookload, WOB, RPM, bit depth, mud pressure, etc. The  
ML models and wider risk detection system have been demonstrated to generalize to new wells, 
and consistently produce high performance across those tested, without any need to pre-train 
the models on historical data from offset wells.  

The system connects to WITSML data stores and outputs warnings with specific information 
regarding the identified symptom of the potential drilling incident, leaving it up to the rig crew 
or drilling supervisor to decide how to act on those warnings. The system provides drilling 
engineers with live warnings on average 1.5-4 hours prior to incidents, giving rig crews enough 
time to react. This also allows drilling engineers to know in advance a specific source of 
potential risk, which assists in selecting the right strategy for implementing corrective actions.  

The technology’s performance was successfully verified in live operations and post-drill 
studies on historical data on over 300 wells worldwide during the past 2.5 years, with mean 
recall and precision metrics of 0.986 ± 0.050 and 0.712 ± 0.181 respectively across historical 
test wells, and significantly reduced occurrence rates of stuck pipe incidents in both onshore 
and offshore operations. Real case studies for onshore, offshore, conventional and 
unconventional assets will be presented and discussed. 



 

Introduction 
Stuck pipe is a major cause of Non-Productive Time (NPT), with an estimated cost exceeding 
$580MM per year for the industry; as reported by Muqeem et al. (2012), stuck pipe can be 
responsible for 25% of the total cost related to NPT annually. A more recent study showed 
stuck pipe incidents accounting for approximately 15% of NPT (Alshaikh et al., 2019). Stuck 
pipe incidents occur in all types of well operations, from tripping/reaming (56%) to drilling 
steady (14%) and while the drill string is stationary (30%). The main causes of stuck pipe 
incidents are differential sticking (25%), packed hole (42%) and jammed pipe (20%). In 
addition to high cost, stuck pipe incidents may also pose risks to health and safety or result in 
environmental damage. Reducing risks of stuck pipe is a critical cost and safety driver in any 
well operation.  

Since the early 2000s, and especially during the past 10 years, numerous data analytics 
methodologies, including those labeled as Machine Learning and Artificial Intelligence 
(ML/AI) have been researched and developed, with varying levels of success. Typically, in 
most of the published case studies the technology is demonstrated to bring value when it is 
targeting specific well types, drilled in specific plays, with specific BHA types, etc., with many 
of these only tested on historical datasets (Al Dushaishi 2021, Alsahaiti 2021, Alzahrani 2022, 
Brankovic 2021, Elahifar 2022, Elmousalami 2020, Khanh Do 2021, Mopuri 2022, Nautiyal 
2022, Singh Saini 2020, Zhu 2022), and very few works reporting on field-tested applications 
(Bahlany 2021, Salehi 2022). A good analogy would be if doctors had to invent new antibiotics 
for each and every patient who have the same bacterial infection. The “holy grail’ of drilling 
ML/AI is a technology that can be applied on any well, at any moment, regardless of the well 
specifications and without needing any preparation work. There are three main challenges that 
could be immediately addressed by such high-efficiency and versatile technology:  

1) Operators/contractors have accumulated an enormous amount of time/depth drilling 
data and digital well reports, the majority of which is not being used for any data 
analysis. Lessons learned are not incorporated on a regular basis. The stuck pipe 
incident occurrence rate for some operators has remained consistent year after year. 
However, drilling parameters in most cases exhibit symptoms which could be used to 
address this issue. 

2) With a strong growth of drilling activity around the world, companies are facing 
challenges of hiring experienced and well trained personnel at the rig, resulting in 
human factors becoming a prominent source of NPT and Invisible Lost Time (ILT). 
Automated solutions, using Machine Learning, can significantly reduce errors due to 
human factors and improve reliability and consistency across all wells drilled.  

3) Drilling engineers of operators or oilfield services companies lack the time to prepare 
data, pre-train ML/AI on offset wells or study the underlying techniques/methodologies 
to properly configure an automated risk detection system. The associated costs may 
also discourage them from pursuing such initiatives themselves. 

The industry is ready for a “mass scale” deployment of ML/AI technology, with the following 
building blocks already being in place:  



1) Data quality is now becoming much better and more standardized. Data pre-processing, 
clean-up and preparation is still required, however these processes can be automated 
within the software.  

2) Internet connectivity and rig-office real-time communications have been significantly 
improved, allowing ML to be easily added on top of existing data streaming, monitoring 
and visualization infrastructure.  

3) Sparse but successful ML/AI case studies (as part of general digital transformation 
initiatives) have demonstrated value and triggered strong interest in the industry, 
opening the path for full scale development and deployment of ML/AI applications 

4) Some companies already have highly suitable (for ML/AI deployment) infrastructure 
in place, consisting of real-time operations centers (RTOCs) and established decision 
making and communication processes between RTOC and the rig. Other operators, that 
don’t have RTOCs, have established procedures and work closely with drilling 
contractors to improve drilling performance. In any case, whether ML/AI is deployed 
on the operator or contractor side or both, it is ultimately bringing value to operations.  

This paper provides case studies and analysis of a stuck pipe risk detection system (SPDS) 
tested across various geographical regions, fields, well types, drill specs etc., in both historical 
and live operations, in order to (a) test the generalizability of the methodology; b) verify that 
the system could detect early risk symptoms and pre-warn engineers of potential hazards with 
a maximum “heads up” time and minimal of  false alarms; and c) automatically analyze and 
identify the possible cause of detected stuck pipe hazard, such as differential sticking, dynamic 
friction or hole cleaning, and notify the engineers accordingly, thus allowing them to take 
appropriate risk-mitigating actions. 

Methodology 
The risk detection system discussed in this work is made up of sub-components targeted at a 
variety of common causes of Stuck Pipe, and their associated risk symptoms. These include 
Differential Sticking, Mechanical Sticking, poor Hole Cleaning, tight spots and restrictions, as 
well as transient risk symptoms such as unexpected pressure or torque spikes. All the main 
operations carrying stuck pipe risks are within scope of the system, such as drilling, tripping in 
or out, circulation, (back)reaming and hole opening. For more information about the 
functionality of the software, the reader is directed to previously published works, which 
provide further details on the Differential Sticking (Meor Hashim 2021a), Mechanical Sticking 
(Bin Othman 2022) and Hole Cleaning (Robinson 2022) risk detection modules, as well as 
techniques developed to identify rig states and events which contribute to false warnings if 
undetected, and eliminate them (Robinson 2023). Furthermore, operators have also published 
articles on their experience of running the software on live operations (Meor Hashim 2020, 
Meor Hashim 2021b, Meor Hashim 2021c, Rosli 2021, Yusoff 2021).  

To develop the system, the authors used data from offshore (deep and shallow water) and 
onshore wells, located in variety of regions, such as Central and South America, Northern 
Europe, West Africa, Central Asia and South East Asia. These included a mixture of vertical 
and deviated wells, different section sizes and downhole drive types, such as Positive 
Displacement Motors and Rotary Steerable Systems. Wells used in the training datasets were 
not included in the validation datasets, which used a set of independent wells. This more closely 
replicates the difference between using a system in production compared to historical 
benchmarking, and is a better test for generalizability than using a different training/validation 



data splitting scheme. Strong performance at this stage was a prerequisite for progressing to 
the testing and case studies explored in this work. A new and distinct set of wells, many located 
in North America, South America, Southeast Asia and the Middle East, was analyzed for the 
case studies presented in this article, which again had not been used for training the SPDS’s 
underlying models at the time of testing. Hence, this work is only concerned with cases that 
can indicate whether or not the software is well-suited to generalization and out-of-the-box 
usage. 

Several types of test were used for performance validation, each fulfilling a particular 
purpose for demonstrating the system’s effectiveness at identifying stuck pipe risks and 
assisting operators to mitigate these, resulting in fewer incidents and less non-productive time. 
These testing methods were 

(1) tests on data from historical wells to verify whether the SPDS generates valid early 
warnings prior to known stuck pipe incidents;  

(2) blind tests on historical data where information on whether an incident occurred or not was 
unknown to the tester;  

(3) live field tests to verify risks are detected in real-time, communicable to monitoring 
engineers and compatible with operational workflows and practices;  

(4) analysis of larger samples of wells, with and without the SPDS running, for evidence of a 
change in the occurrence rate of stuck pipe incidents between the sample groups.  

General historical tests with known incidents 
Testing on historical data was used to demonstrate that stuck pipe risk symptoms could be 

detected ahead of recorded restrictions or incidents in the test wells. Efforts were made to 
conduct these tests by running the SPDS with its standard configuration, without repeat runs 
using tuned configurations to suit the now-known stuck pipe scenarios. As a result, a few of 
the test wells were analyzed using an older version of the software, which lacked certain 
upgrades designed to reduce false warnings and detect transient (short-timescale) Mechanical 
Sticking risk symptoms.  

Contrary to in live-testing, software-generated warnings based on historical data obviously 
have no operational impact, allowing risk detection capabilities to be assessed without 
warnings having any causal effects on observed outcomes, which would complicate analysis. 
In live-tests, rig crews can take action based on warnings raised and mitigate potential issues; 
indeed, in the ideal case, all risks would be detected and mitigated, making it difficult to 
estimate statistics such as recall, precision, or other commonly used metrics for classification 
problems, which are useful for historical tests. Recall is defined as the proportion of the total 
“positive” (stuck pipe risk) events correctly identified by a classifier, whereas precision is 
defined as the proportion of “positive” classifications which actually correspond to “positive” 
values in the dataset. 

Note that in some cases risks may also have been identified and mitigated by monitoring 
specialists and/or rig-based staff; these are also useful to consider, as they provide insight into 
how early symptoms can be detected by software compared to trained humans. In cases where 
incidents did occur with no sign of interventions in the historical well data, the working 
assumption is that operational teams were not able to identify the risk symptoms. Hence, for 
performance analysis purposes, warnings coinciding with or prior to an intervention by 
operational teams, or prior to an observed stuck pipe incident or restriction regardless of 
interventions, are considered valid. While one cannot conclude with certainty that a given 



historical incident would have been prevented had warnings been raised, the system’s 
capability to provide early warnings for as many incidents as possible (high recall) can be 
confirmed, and that false warnings are within an acceptable limit (high precision, low false 
positive rates). In real operations, there is a time and attention cost to monitoring engineers 
associated with false warnings, hence these should be minimized as much as possible for 
practicality, while maintaining high recall values. Typically, multiple warnings are raised prior 
to a particular stuck pipe risk or incident. Recall was thus calculated based on whether or not a 
specific risk or incident was identified by the software, whereas precision was calculated in the 
usual way based on all warnings raised, following validation of alerts by a drilling engineer. 
Calculating recall on an incident basis is preferred, as counting all valid warnings prior to 
incidents can distort the values (particularly if many warnings are raised in a few cases), 
possibly resulting in overestimated performance. 

In certain historical test wells, there may have been no stuck pipe-related incidents or 
symptoms, and very small numbers of warnings raised. In these cases, recall cannot be 
calculated (zero divided by zero) and precision is also misleading; for example, if just one false 
warning is raised over a 10 day period with no incidents, the system’s precision at stuck pipe 
risk identification as evaluated on that dataset would still be zero, which would distort precision 
statistics averaged across wells. Hence, a more intuitive way to assess the prevalence of false 
warnings is to calculate an average daily rate of false warnings over the full span of the well, 
which better reflects the potential time cost to monitoring engineers; this is presented alongside 
other metrics in the next section. 

 
Blind tests on historical data 

An improved method for using historical data to test the efficacy of the SPDS, and its ability 
to generalize to new scenarios, is to conduct blind tests on wells not included in the datasets 
originally used to develop and validate the system. For blind tests, an operator would provide 
data from several wells, where the data intervals provided would be cut-off at a time before the 
end of the well. In some cases, but not all, a stuck pipe incident had occurred on the wells some 
time shortly after the cut-off point, usually within 2 hours. While the authors were conducting 
the test, the operators withheld this information, and only confirmed which wells had incidents 
after completing the analysis and presenting the results. This is a superior testing method 
compared to generic tests on historical data, as it removes the ability of the tester to repeatedly 
run the test with slightly different configuration parameters until some notionally “correct” 
outcome is obtained. Hence, blind tests provide more objective insights into how well the SPDS 
performs on new wells, and more closely replicate how such software systems would be used 
in real operations, compared to generic tests on historic data. Many of the blind test wells were 
located in fields and regions from which no data had been used to develop the risk detection 
system at the time of testing. However, the exact number of wells in this category cannot be 
confirmed, as the companies providing the data did not always provide information on well 
locations.  

Live field tests 
Field tests on multiple live operations were also conducted as part of the system validation 

and performance benchmarking exercise. The field tests presented in this work included two 
key components. Firstly, analysis of specific interesting stuck pipe risk scenarios from the live 
wells was conducted; these were intended to illustrate in more detail how monitoring engineers 
were able to consume the notifications generated by the software, and act accordingly to 



mitigate an identified risk. In the cases presented, additional information not captured in the 
rea-time data feeds was obtained from discussions with the operators which helped to confirm 
the validity of warnings raised, such as the presence of excessive cuttings at the shakers, or a 
particular depth range in the well which had been previously (and separately) linked to higher 
risk of stuck pipe.  

  
Analysis of effects of running live risk detection software on larger groups of wells 

While specific cases from live operations where monitoring engineers were able to use the 
software’s outputs to make interventions are noteworthy, they are not sufficient on their own 
to demonstrate the software’s efficacy for stuck pipe prevention when integrated with an 
operator’s wider portfolio of assets. Given that an intervention was made, and it is not possible 
to assess what would have happened had monitoring staff not intervened, experience obtained 
from a selected few wells is not a sufficiently strong indicator of the system’s performance. 
Therefore, a larger sample of wells drilled with and without the software was considered to 
assess whether it had a measurable effect on the occurrence rates of stuck pipe incidents 
encountered by the operator, as observed in the treatment (software used) and control (software 
not used) groups. 

In live operations, the SPDS was deployed to cloud servers, and integrated with operators’ 
remote WITSML data stores. An operational overview is provided in Figure 1. Data was read 
from the remote stores, processed by the SPDS, and outputs written back to the data stores in 
the form of dedicated WITSML logs and curves linked to specific wellbores, which could be 
displayed using standard commercial WITSML viewers used by the operators. Monitoring 
specialists based in remote offices or RTOCs were then able to consume the outputs of the 
SPDS in the form of risk notifications and other quantitative information concerning the 
drilling parameters. Upon being notified of stuck pipe risks, monitoring engineers were 
responsible for notifying the rig-site crew, according to the operators’ communication 
protocols, which typically vary from company to company. 

 
Figure 1: Simplified overview of how the software is deployed and used by monitoring engineers in operations. 

Results and Discussion 
 
Tests on historical datasets 



The performance of the SPDS evaluated on 26 historical wells is summarized in Table 1. A 
high proportion of the 64 stuck pipe-related issues (95%) present in the dataset had relevant 
early warnings generated based on identified risk symptoms, resulting a mean recall of 0.986 
± 0.050, averaging the individual recall values from all wells. To the best of the authors’ 
knowledge, the majority of these wells were located in fields from which no data was used to 
initially develop, configure and validate the detection system’s underlying models and 
algorithmic detectors, although not all well locations were known. Four wells were not included 
in the calculations of mean recall and mean precision (averaged across the wells), as these had 
no incidents recorded within their data. 
Table 1: Summary statistics from general tests on historical data from wells not included in the datasets used for 
developing and validating the stuck pipe risk detection system. Averages were calculated across all wells in the 
dataset, and standard deviations or interquartile ranges are provided as dispersion metrics for mean or median values 
respectively. 

Number of test wells 26 
Number of incidents in dataset 64 
Number of incidents detected 61 (95% of all incidents) 

Mean warning time horizon (hours) 3.86 ± 3.22  
Mean Recall 0.986 ± 0.050 

Mean Precision 0.712 ± 0.181 
Median warning count per day (all warnings) 3.5  

Interquartile range, warning count per day (all warnings) 5.2 
Median false warning count per day 1.0 

Interquartile range, false warning count per day 0.8 
 

To complement the summary statistics in Table 1, the distributions of precision, average 
warnings issued per day (total and false-only) are shown in Figure 2 for the set of historical 
test wells. The precision distribution in Figure 2(a) is skewed, with a majority of wells with 
precision values greater than 0.7, and a tail containing a small number of well with lower 
precisions, and higher false warning rates; some of these correspond to wells with small 
numbers of warnings in total. In all but two of the wells, fewer than two false warnings were 
issued per day of data, on average across the full time interval of the well, as can be seen in 
Figure 2(c). These two outliers correspond to tests conducted using an older version of the 
stuck pipe risk detection software that did not include the modules for suppressing false 
warnings described by Robinson et al. (2023), hence higher false warning rates were recorded 
in these cases (lower precisions), as well as more warnings in general. The distribution of total 
warnings issued from tests on each well is also provided in Figure 2(b) for comparison. At an 
average rate of fewer than 2 false warnings per 24 hour period, the number of false warnings 
that would be issued to monitoring specialists was within manageable limits, although attempts 
should be made to reduce this rate as much as possible via system upgrades. 



 
Figure 2: Distributions of key summary metrics provided in Table 1, demonstrating how (a) precision, (b) average 

count of warnings per day, and (c) average count of false warnings per day, vary across the test wells. 

The aforementioned historical test results collectively provide an indication that the risk 
detection system is suitable for general, out-of-the-box usage on new wells. However, it should 
be noted that not every stuck pipe incident can prevented, which highlights the importance of 
the role of human factors, rig-site to RTOC communications and organizational practices in 
acting on the stuck pipe risk warnings when notified. Also, certain incident types cannot be 
detected ahead of time due to their sudden nature, such as severe collapses of material into 
wellbore from wellbore walls, however these types of incidents are typically rare, and tend to 
occur within particular formation types, namely fractured and unconsolidated with poor 
structural integrity. 

Two example cases from the historical wells analyzed which faced stuck pipe issues are 
provided in Figure 3 and Figure 4. The first scenario, from a well in the Eagle Ford formation, 
encountered mechanical sticking issues while pulling out of hole, shown in Figure 3, visualized 
using a commercial WITSML viewer. In this case, the pipe was stuck for approximately 5 
hours after the time interval displayed, with the beginning of the stuck issue shown at the end 
of the sample interval. A static friction warning and two mechanical sticking symptoms were 
flagged in the early part (~08:00), prior to a restriction around 08:40, from which further 
mechanical sticking symptoms were highlighted. After working the drillstring free and pulling 
out further (without rotation or circulation), more mechanical sticking warnings were issued 
approximately 20 minutes before getting stuck at around 09:50.   

 
Figure 3: Example test scenario from historical data with mechanical restrictions visible in the hookload 

measurements while tripping. Historical surface data from the operation and the stuck pipe risk outputs are visualized 
in a commercial WITSML viewer.  Several warnings were raised by the software in advance of the stuck pipe event 

occurring at the end of this interval. 



The second scenario was observed in data from an unconventional well in the Middle East, 
with possible Differential Sticking and mechanical issues while running in casing shown in 
Figure 4. Here, several symptoms of drag were identified by the Differential Sticking agent 
prior to the area where the casing needed to be worked down, starting approximately two hours 
before. Two mechanical sticking warnings were also flagged when the restriction was 
encountered.  

 
Figure 4: Example test scenario from historical data with static friction warnings (differential sticking risk) and 

mechanical restriction symptoms visible in the hookload measurements while running in casing prior to a period with 
restrictions. Historical surface data from the operation and the stuck pipe risk outputs are visualized in a commercial 

WITSML viewer. 

 
Blind tests on historical data 

The stuck pipe detection software’s performance in historical blind testing is summarized 
in Table 2. All 10 wells where warnings were raised prior to the end of the well data intervals 
were confirmed by the relevant operators to have experienced a stuck pipe incident a short time 
after the cut-off point. Furthermore, warnings were not observed before the data cut-offs in the 
4 wells which were not followed by incidents. By definition, the software had not been exposed 
to any of the 14 blind test wells prior to this analysis, and in the majority of cases (the locations 
of some test wells were unknown), nor had it been exposed to wells from the specific regions 
or formations the test wells were drilled in. Warnings were analyzed by a drilling engineer to 
either validate them or label as “false”. 
Table 2: Summary statistics relating to the software’s performance on historical blind tests. Warning time horizons 
were defined relative to the ends of blind test data intervals provided by operators.  

Number of wells blind-tested 14 
Number of wells followed by stuck pipe incidents 10 

Number of incidents pre-warned at least 1 hour before data cut-off 10 
Mean false warning count per 24 h < 2 

These positive summary metrics demonstrate the software’s capability to generalize to new 
wells, fields, and regions while maintaining high performance at detecting symptoms and risks 
pertaining to Stuck Pipe. An example screenshot of data from the latter part of a blind test well, 
visualized in a commercial WITSML viewer, is shown in Figure 5. In this well, an 
unconventional well drilled in the Haynesville formation (East Texas), the software generated 
mechanical sticking risk warnings with increasing frequency and severity (yellow vs orange) 
while tripping out, and approaching the cut-off point in the data provided by the operator. This 



indicated increasing drag during dynamic conditions, and is a good example of risk symptoms 
starting to appear several hours in advance of an incident. The operator confirmed that a stuck 
pipe incident occurred after the data’s cut-off point. 

 
Figure 5: A blind test data interval visualized using a commercial WITSML viewer. Mechanical sticking warnings are 

raised with increasing frequency and severity over the displayed interval. Orange warnings indicate a higher risk 
severity than yellow warnings. After the cut-off in the data at the end of the interval, a stuck pipe incident occurred. 

A second example from a blind-test well, with a stuck pipe incident confirmed to have taken 
place by the operator after the cut-off in data, is shown in Figure 6. Several Differential 
Sticking warnings, based on monitoring and forecasting static friction characteristics over 
several stands, were raised during the approximately ten hour interval before the end of the 
available data, and can be seen in track 2 of 4. Furthermore, multiple Mechanical Sticking 
alerts were issued in the last two hours while tripping out, indicating restrictions to linear 
motion. Finally, two hole cleaning warnings, based on downhole Equivalent Circulation 
Density (ECD) estimates, were issued while reaming. This combination of hole cleaning 
warnings, and both high dynamic and static drag, was consistent with a pack-off scenario.  

 
Figure 6: Screenshot from the final time interval of a blind test well, where the operator confirmed that a stuck pipe 

incident occurred within an hour of the cut-off in the data. 

Field testing on live operations 
The following section reviews field test cases where the stuck pipe risk detection software 

was actively used in live operations, with three example scenarios discussed. In all cases, the 
tests were conducted with operators with wells located in fields which the risk detection system 



had not been previously exposed to via training or validation datasets. The objectives of these 
tests were to verify the system’s efficacy on live operations, in terms of identifying risk 
symptoms, testing capability to generalize to new wells and fields, as well as verifying that it 
could be integrated with, and complement, the operators’ existing processes and IT 
infrastructure.  

A live field test scenario from a well drilled in South America is shown in Figure 7. While 
tripping in hole, the operator’s remote monitoring engineers observed Differential Sticking risk 
warnings on approaching a depth range where some restrictions had previously been 
encountered in offset wells; note that this information was unknown to the software. This is 
consistent with Differential Sticking risks usually being closely linked to formation types. 
Approximately 30 minutes after the first warning, some resistance to translational motion was 
encountered, prompting the monitoring engineers to intervene and advise corrective actions to 
the rig crew. After following the recommendations to ream and then move through with pipe 
rotation and circulation, the risk area was passed without incident.  

 
Figure 7: Example annotated screenshot taken from a live operation in South America where the operator’s monitoring 

engineers observed stuck pipe risk warnings (Differential Sticking) while tripping prior to a risk zone, and advised 
corrective actions to the rig. After following recommendations to ream and move through with pipe rotation, the risk 

zone was passed without incident. Data is visualized in a 3rd party commercial WITSML viewer. 

Another example from a live operation, where software-generated alerts prompted an 
intervention to be made successfully, is presented in Figure 8, which visualizes the observed 
well data in a different commercial WITSML viewer. This scenario was observed during field 
tests on a conventional offshore well located in Southeast Asia. While reaming, several Hole 
Cleaning warnings were raised based on the estimated downhole ECD and its forecasted values 
in the near-future; these alerts are indicated by the shaded area and message texts in the figure.  



 
Figure 8: Example case from a live field test on a conventional offshore well, where Hole Cleaning risk warnings were 

raised (leftmost track, in shaded area) The vertical position of the alert text corresponds to the notification time. 
Curves for estimated ECD, mud flow rate, standpipe pressure and hookload have been annotated. The drilling data is 

visualized in a third party commercial WITSML viewer. Upon notifying the rig site, the shakers were checked and 
excessive cuttings were observed in the returns, which prompted remedial actions to be taken. 

Upon receiving these alerts, the monitoring engineer notified the Drilling Supervisor of the 
potential hole cleaning risk. This prompted the rig-based crew to check the shakers, where they 
observed excessive cuttings in the returns; based on this, it was decided that actions would be 
taken to mitigate the risk identified by the software. After circulating bottoms-up and 
increasing the mud weight, the downhole ECD estimates were observed to stabilize, and no 
further hole cleaning warnings were raised during this interval, as well as no pack-off incident.  

A final live field-test scenario, from an offshore well in the North Sea, is presented in Figure 
9. Here, hole cleaning warnings were raised based on an increasing trend in the system’s 
estimated ECD values, shown by the green dotted line in the lower track. These estimates were 
independently confirmed by the downhole ECD measurements, which are not used by the 
SPDS, but can provide a useful reference for assessing the detection system’s ML model for 
estimating ECD. Of note, pack-off tendencies were recorded by the mud loggers during this 
time interval, which adds further evidence validating the software’s outputs. Some spikes in 
rotary torque were also observed during this time period, suggesting increased resistance to 
rotation, consistent with a pack-off. Warnings were generated by the Hole Cleaning module 
approximately 1 hour before the first observation of pack-off tendencies by the mud loggers, 
with a second warning raised approximately 30 minutes later. Following this, the ECD 
stabilized, as can be seen in the central time interval of Figure 9, before the third visible warning 
was raised, coinciding with observation of some ECD fluctuations and additional notes 
regarding a pack-off situation. 



 
Figure 9: Example scenario from a live operation where hole cleaning warnings were raised prior to pack-off 

tendencies reported by the mud loggers. 

Analysis of stuck pipe incident rates on a portfolio of wells 
Results from a study considering stuck pipe incidents before and after the software was used 

in live drilling operations (from 2020 onwards) are shown in Figure 10. In this case, the 
statistics specifically refer to stuck pipe incidents related to hole cleaning issues, due to the 
availability of data on historical hole cleaning incidents prior to 2020, which made up 
approximately half of the stuck pipe cases recorded during that time period (Liang 2017, Meor 
Hashim 2021b, Robinson 2022) allowing a comparison to be made. From 2020 onwards, the 
drilling software solution used in 2017-2019 was either replaced by the stuck pipe risk 
detection system developed by the authors, or used in conjunction with it in certain cases. The 
sharp reduction in occurrence rates of hole cleaning-related incidents (per 100 wells) 
demonstrates that the SPDS has been effective as a preventative tool, even relative to the more 
challenging baseline case rate from 2017-2019. This also provides further evidence that the 
system’s underlying methodology and algorithms generalize to new wells. Compared to the 
sample wells where no real-time drilling software solutions were used, an approximately 
tenfold reduction in stuck pipe cases was observed, while comparison to wells drilled during 
the 2017-2019 time period yielded an approximately halved incident rate. 

 
Figure 10: Observed occurrence rates of stuck pipe incidents related to hole cleaning issues, per 100 wells drilled, 
from several time periods before and after adoption of the Stuck Pipe risk detection software into live operations. 



Wells drilled in 2022 used an upgraded version of the software. The values for 2014-2021 are reproduced from 
previously published work (Robinson 2022). 

Note that although the authors have attempted to perform a like-for-like comparison, there 
remains the possibility of an issue with sample selection bias, as the operator’s policy was to 
primarily use the software on wells which had been identified to be at greater risk of stuck pipe 
during the planning stages. Hence, the higher risk wells are expected to be over-represented 
among the sample analyzed during the study from 2020 onwards, the period in which the 
software was used. If only a sample of high risk wells had been considered up until 2019, the 
observed stuck pipe incident occurrence rates may have been higher. Similarly, had both low 
and high risk wells been included in the sample where the software was deployed, lower 
observed occurrence rate would be expected. Unfortunately, the information required to 
quantify this was not available to the authors, hence only a general caveat can be provided 
regarding this expected sampling bias based on knowledge of operational practices. Regardless 
of this, the observed stuck pipe incident occurrence rates from years where the software was 
used indicate that the risk detection system can be deployed effectively on real operations, with 
strong performance not limited to tests on historical data. 

 

Conclusions  

Several types of historical and live field tests were presented in this work, and have 
demonstrated that stuck pipe risk detection software can identify risk symptoms and leading 
indicators, and provide early warning notifications to monitoring engineers. Tests on historical 
data, particularly the blind test cases, provide evidence that the software can detect risks, 
without the possibility of interfering with occurrences at the rig, while live field tests augment 
this by verifying the system is compatible with operators’ existing workflows and practices and 
can provide value in the oilfield. The system has been tested on previously unseen data from 
wide variety of geographies (continents, regions, fields, wells etc), with strong performance 
across the board. This shows the system’s broad utility and ability to generalize to new wells, 
supporting out-of-the-box usage, which greatly simplifies utilization of such a tool due to 
minimal configuration requirements. Evidence from a wider study on an operator’s portfolio 
of drilling operations, which compared wells drilled with and without the stuck pipe risk 
detection system in use, indicated that the occurrence rate of stuck pipe incidents can be greatly 
reduced through use of the real-time monitoring software. 
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